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IMPACT BUCKLING 03’ THIN BARS IN THE ELASTIC RANGE

FOR ANY END CONDITION*

By Josef Taub

SUMMARY

Followiug a qualitative discussion of the complicated
process involved in a short-period, longitudinal force ap-
plied to an originally not quite straight bar, the actual
process is substituted by an idealized procoss for the pur-
pose of analytical treatment. The simplifications are:
the assumption of a~ infinitely high rate of propagation
of the elastic longitudinal waves in the bar, limitation
to slender bars, disregard of material damping and of ro-
tatory inertia, the a~sumption of consistently small elas-
tic deformations, the assumption of cross-sectional dimen-
sions constant along tho bar axis, the assumption of a
shock-load constant in time, and the assumption of occon-
tricities in one piano.

Then follow the mathematical principles for resolving
the differential equation of the simplified problem, par-
ticularly the developability of arbitrary functions with
steady first and second and intermittently steady third
and fourth derivatives into one convergent series, accord-
ing to the natural functions of the homogeneous differen-
tial equation. .

The problem is resolved for one type of support corres-
ponding to the third Eulerian loading condition (pin-ended
at one end, clamped at the other). The resolution for sup-
port conditions cgnform~~le to the first and fourth,Eul6ri-
,an load case, may be effected in the same fashion, whi+e
substantial simplifications are afforded for “the Koning-
Tatib antilysis which treated a type of support ,conforma%lY,
to the second Eulerian load case.
-—_______________ _____._.____.-_.—--------————

*“Stossartige Knickbeanspruchung schlanker St&be im elas-
~ tischen Bereich.ll Luftfahrtforschung, July 6, 1933;

pp. 65-85.
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The premi,se is a course of the center line of the bar
in unstressed condition such that precisely the fundamen-
tal. oscillation occurs during the shock, thereby ensuring-——..-
different bar forms under different shock loads. But ap-
propriate choice of one factor makes the mutual deviation
of the ordinato of the bar axis small enough so as to allow
a mutual comparison” of the test data for different shock
loads without appreciable error. Strictly speaking, the
data are applicable only to the chosen bar shapes. As to
the effect of a minor change in bar shape, we refer to the
appendix of the Koning-Taub ,report on the same subject (ref-
erence 1)0

The resolution of the differential equation .af.fords
the moment formulas during the effective period of the,-—____
shock load, ~~~tt~ the actual shock, free oscillations oc-
cur whose amplitudes are given through the condition (de-
flection and rate) at the end of the actual shock (expan-
sion in series, according to the natural functions of the”
free oscillations)? An upper limit is established for the
moment,s after the actual shock. The investigation is ef-”--—-
fected separately for shock loads smaller and greater than
theEulerian load for mathematical and physical r.eaS~nSo.

The” results are evaluated by comparison with ,the rno-
merits set up by a static load equiya~ent to. the shock “load.
Tho determination of those moments for loads greater than
the Eulerian loads involves great difficulties, ho,wever,
with stated eccentricities~ so the interpretation of the
results above the Eulerian load is effected by”comparison
of the,data for the range of shock loads below tlie Euler
load.

The results are as follows: The ratio of rnaximum,”mo-
ment due to shock and static load is for stated eccrentric-
itiesunaffected, by the magnitude of the latter? For short
shock periods t’his ratio is less~ for longer shock periods
greater than 1. Its maximum generall~ occurs onlY .k2~~Qz
the actual effect of the shock load (that is, during the
free oscillations) when the greatest deflection possible .in
this shock period is reached during the actual shock period.
The maximum value further increases with.increa,sed shock.
loads in two (at shock l?ad = O) cases analyzed herein to
3.4 (at shock loads approaching the Eulerian load). The
excess stresses pertaining to identioal shock loads due to
the shoclklj.ke stress”d~creaso, on the whole with increased
shock loa’ds~ These results rtifor to..ihock loads. lQwer than
Eulcrian loa~~, . .- .“
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Whereas the moments in shock loads below Eulerian
> lo-ad a:btatn”a maxtmhm which is not exceeded during any,

shock period, they i~crease unrestrictedly with the shock
period at shock loads above Eulerian load.

}
~ In contras% with static loads; the Euler load may...

equally be exceeded in shock loads wilen the shock period is
\ qii~quately short-
I

,.
. . . . . . .. . .

. The ,results are illustrated by numerical examples and
the “range”of validity of the approxitiated differential
equation .prove~ thereby.

I. INTRODUCTION

Whereas the behavior of structural components in pure-
ly static stresses is comparatively well known, the same
may not be said of dyuauic stresses. The probable cause
is t“nat the investigation of dynO.niC stresses due to ap-
pearance of an additional dimension, that is, the time
factor is, a priori, more complicated than the study of
conditions produced under static loads~

As a ‘matter of fact, stress and deformation conditions
of structures are always due to outside interferences which
change with respect to time. Strictly speaking, their
study therefore always affords a dynamic problem. OD the
other hand, the time rate of change of these outside inter-
fercmccs “is, in many cases, so slow that the ensuing inner
mass forces are negligibly small relative to the other
(elastic or plastic} inside forces, with the result that
the conditions may be accurately enough described in a sim-
ple static investigation. This is, however, no longer per-
missible in cases wherein the outside interactions are rap-
idly changing.-

In bridge, and specifically in airplane design, how-
ever, the occurrence of shock-like load gffects is very
frequent, so that the static t,est supplies no longer any
reliable basis for the estimation of the strength of the
structural parts. While high factors of safety and the
assumption of an impact factor assures the safety of
bridges, even without extensive dynamic studies~ this con-
dition does not prevail in airplane design on account of
the weight increase involved. The problem of the airplane
designer is to ascertain the true ihner ’and outside loads

.
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and to. fit the dimensions to the loads as closely as pos-
sible~ ‘“ ‘U;a’;’:‘“’”””““““ .,

..,. .. . ,- ..
.. ...,.

The present”,paper,,’an attempt in this”’”’direction,
treats the hitherto neglected problem. of dynamic stress,,,
and specifically the behavior of an.orlgii~ally not quite’
straight bar “,inbuckling under- shock loadc The study was

;,prjp~pted”by a report”of :?, KOning on the same subject (ref-
erence 1), and which was’ translated intb German and ex-
tended by the writer in collaboration with the DVL and th’e”
,:Rijks-Studiedienst v’oor de Luchtvaart, Amsterdam.

11. I?OTAT”ION

Q kg,

s’:., kg,

P X kg,=.

p~ ,,“kg,
.,..,7,

&~; irg,

x u.,.....
.....

s ““’.’ “m,

Y m,
.. .

G m,

s m,

1“ m,

shear.

tension.

compression.

Eulerian buckling load.

support reaction perpendicular to compres-
sion.

abscissa measured parallel to load P.

abscissa mea’sured parallel to bar axis.

ordinate of bar axis in unstressed condition.

~famplitude’t of bar axis in unstressed cond5-
tio,n.

‘f-lx= place function.
deflection (

>-’qt = time function.

sag of p,oint of application of compression P,

bar length (chord length in approximations).

a m,
,,..,

chord length.

.. . .. :..;..:, ,.. :,. . . ,,. .- ,. .. .
,...

. —
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distance of pulsatitig shear from origin of
coordinates.

m,

a, subtending slope of elastic line.

r radius of curvature of elastic line~

cross-sectional area.

axial moment of inertia of area.

inertial radius.

modulus of elasticity.

shear modulus.

de~sity.

3’

i

E

Ill,

kgm- 2,

kgm- 2,

l-t>2 ~-4-Q-l=s 9P

t t ine coordinate.s,

s,

s,

T shock period.
,...

time coordinate.t-T

T period of free transverse fundamental oscil-
lation.

freque;.~cy.

phase shifting.

proper values.

Ss

-1s,

m- 1 ,

core functions

see equation (35).a,

ratio of compressio~ to Eulerian buckling
load, i.e., the reciprocal vaiuo of the
static ‘hckliag strengt’h.

P
aE=—-$

PE

ratio of shock period to oscillation period
of the free transverse fundamcmtal oscilla-
tion.

T
-o=p

ratio of a.hsolute maximum moment in the
static and dynamic case,

c,

111111 1 11 1 1 Immmllmllllllm ■ l 1
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v, constant value (comyare equation (31)).

Ans nth coefficient of a series expansion.
.-

A,B, C,D,A,B,c1,c2,kl ,kz, integration constants.

Indices,:
m,n=l,2,3 ..... the natural figures.

o refers to quantities occurring with tension
P = 0.

II, quantities occurring with Eulerian buckling
load.

I,r denote quantities to the left or right of

5“

x, place function.

t, time function.

Signs of differences: ‘

III.

d~~ote the lst, 2d, 3d, 4th derivative of

% t according to x.

denote lst, 2d derivative of ~t, accord-
ing to t.

QUALITATIVE DISCUSSION OF PROCESS

The qualitative description of the buckling stress
due to shock load is as follows:

An arbitrarily supvorted, originally unstressed, elas-
tic bar is suddenly subjected to a longitudinal force con-
stant or variable with respect to time. If “tho bar axis is
straight and the load is coincident with it, a so-called
“dilatation wavell is produced in the bar, i.e., a longitu-
dinal wave consisting of compressions or thinnings (or”
groups of such waves) which, as known, travel at sonic ve-

.1
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locity ~, in the material of the bar. Arrived at the

other end, the shock wave is at least partially reflected
on account of the there existing discontinuities in densi-
ty. and elaet,icity. If the end is clamped fast, or consists

.-@f” a free end dipped in a medium of zero density, the re-
flection is complete. In the further course the original
(primary) waves superpose themselves onto the reflected

“(secondary) waves. When the excitation of the shock waves
is harmonic and in absence of material damping (i.e., zero
viscosity of material) the superposition of tho primary and
completely reflected secondary waves produces so-called
standing waves, that is, waves with fixed nodes. But allow-
ing for material damping and energy scatter at the points
of discontinuity, there still remain apart from the stand-
ing waves which are of lower amplitude in this case than
before, the so-called IIadvancing waves.” A detailed re-
port on this phenomenon - although limited to transverse
waves - has been published by Katsutad.e Sezawa (reference
2).

In enharmonic shock excitations the type of superposi-
tion depends on the type of excitation. The case, for ex-
ample, of a bar hit by a certain mass at a certain rate,
and of a bar struck by a mass of zero velocity (tlsuddenly
loaded bartl) with disregard as to viscosity and presumed
maintenance of energy (ioe. , absence of energy scatter at
the points of discontinuity of density and elasticity) has
been treated by several authors (reference 3 ~ Once the
first disturbance, /+moving at the rate of ?3 P has cov-
ered the length of the bar, the latter is in a variable
stress condition throughout its length both with respect
to time and place.
.. .. . .

After the shock, that is, after the contact between
the chock mass and the bar has ceased, the bar evinces
wave motions corresponding to the free oscillation forms.
The initial conditions of this period of motion are con-
tingent upon the condition existent at the end of the ac-
tual shock. The stress condition of the bar is equally
variable in time and place in the period after the shock.

Now, if the bar axis is not exactly straight or if
the shock load is eccentric, the results are bending waves
in addition to the longitudinal waves, The rate of motion
of these waves is, however, contrary to that of the longi-
tudinal waves, dependent upon the wave length. Unless the
frequency is unduly high, it is inversely proportional to

.,. ‘-.,;.... ..
..... .

.,-.’ ..’.
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the tiAv6,1&bhs; at high frequencies and when the waves
co~sist ’of”:various groups, other laws are applicable. With

‘-vanishing wave length the rate of motion approaches.that
,... .

J
....

o-f.the Rayleigh waves (v = 0.,9194 ~, ‘
0

reference 4). The

rate’of movemen”t of the bending waves” is also ‘considerably
lower than that of the longitudinal waves. As to reflec-

f-biotiAnd”superposition of bending waves at points of dis-
“Fboutintiities;the same laws apply as to the longitudinal

~-,~waW8E’i~‘‘: -
“.’.....’...

-..”:i, 3y virtue of the fact that the longitudinal waves
move faster than the bending waves~ the point of origin of
the latter is not only limited to the shocked bar end in
the:case of the bar hit by a longitudinal force, as is the
case for the longitudinal wave. Rather a bending wave
comes into being successively at every “point of the bar,
asnsoon as the longitudinal wave has reached t-he particu-
lar point. Each one of these bending waves spreads to
the right and left of its point of origin to be reflected

-~at :the points of discontifiuity of density and elasticity
and to superpose themselves upon eacah oti.er. But thq,rate
of movetient” of these bendiilg waves is in this case unlike
t~e usual ‘bonding waves, since they move in a“more or l~ss
cdmpd~ssdd part of the bar rather than in an unstressed”
bar. -Ac@ording to Sezawa (reference 2), the rate of me-.
.tioh “of the bending waves decreases as the compression” in
tliebar increases. l?or buckling stress due to shock, t’lje’
difference in rate of novemont of the longitudinal and the
trarisverse waves will therefore be even greater than oth-
erwise

According to this qualitative discourse, the process-
es in shock loads in buckling are very complicated, and to
follow them mathematically requires various simplifiJing
assumptions.

IV. SIW?LIFYING ASSUUP!!!IONS

1. The first assumption is infinitely great rate of
movement of the longitudinal waves, or in other words,
that the bar reaches longitudinal stress condition within
infinitely short time. Then the bending waves “emanating
from the differeat points of the bar are simultaneously
excited rather than succe-ssively, and instead of’”a wave
motion there are standing oscillations to begin with.
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This assumption is the more applicable as the frequency of
the shock motion is lower and the shock force greater, be-
cause both factors tend to lower tke rate of movement of.
the bending waves but not that of the longitudinal waves.
Moreover, it is anticipated that the conditions of the 09-
cillating bar corresponding to this assumption will more
closely approach actual conditions as the time interval
between entry of disturbance, i.e., start of shoc~ and end
of shock is greater~

On these premises the analysis is restricted to the
effect of the bending oscillations~ The stress due to the
longitudinal force is readily obtained by dividing the mo-
mentary shock load by the cross-sectional area.

2. The studyinis confined to the investigation of buck-
ling due to shockjslender bars. From the cited qualita-
tive analysis it follows that the ener~y of the shock mass
goes partly into bending and partly into longitudinal os-
cillation energy of the bar. The component of the bending
oscillation increases with the slenderness of the bar as
seen hereinafter.

A bar pin-e~ded at both sides (fig. la) is subjected
to static compression P. Presumedly, the bar was not
quite straight at the start and the deviation of its axis
from a straight line corresponds to a half sine wave. It
can be proved t-hat the elastic line is sinusoidal in t’his
case also. With the arc length as independent variable
(reference 5), w. have:

n= qmax sin ~ s

Moreover, according.to figure lb:

d(q -1-y) = sin ~
-.----—

.ds

&

(3.)

(2)

(3)

The” chord length follows from

,. “~ =;~“dx ~ / “COs “a da (4)
.... ..‘..”::’. 0..
In-sec6nd approach Cos c%
5):

may be replaced by (reference
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,.,,.. .

~2
cC)sa=l---=l- sillz a

.2 2.
.’ .,

“or, because of (3), W

. .
,.

,,This value of Cos a written in (4) gives with due
a~lowance for (1) and (2):

By the same argument the chord” length prior to loading
is:

Consequently, the sag of the applied moment of the load
is:

(5)

The deflection in bar center in this case is conform-
abl,~ to the Koning-Taub report (reference 1):

‘Omax =
c—-.—--

pE ~-- -
P

2EJ
with pE = ‘-~z–— the Eulerian buckling load.

with a = 3-.
pE

(5) and (6) give:

(6)

(7)

This formula yields /?/<2 versus 2, whereby it is
to be remembered that t implicitly occurs also in PE.
The curves obtained for stated P, E, and J values are on
the order of those shown in figure 2. As the slenderness
of the bar increases the displacement 6 of the applied

. .
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moment increases much more rapidly than linear even when
is assumed as being constant. On top of that c, that

‘:s, “the probable maximum deviation of the bar from ~traight,
is,,frequently assumed so much greater as the bar is thinner.
(Muller-Breslau-, for instance, fi~ures with an initial ec-
centricity of 2/200.) “

Thus, while the sag of thp point of applied moment in-
crease’s tiith the length o-f‘the bar “at a much fasfer rate
tha~ li~ear, that due to the longitudinal compression in-
cro”as’”esonly linearly with the bar length (Hooke~s law)o
Thcrofore, the more slender the bar, the greater the do-
flection compared to the displacement of the applied mo-
ment of the force due to compression. Assuming for sim-
plicity that- the force P ..is constant in, time, the energy
required to deflect or compress the bar is simply propor-
tional to the deflection or. compression or, in other
words, the ratio of both is actually so much higher as the
bar is more slender.

Hence the omission o’f“’thelongitudinal oscillations
appear still more justified since the investigation is
confined to slender bars.

3., The damping effect due to material viscosity is also
ignored ‘as its effect ‘will be rather negligible in the
,short period processes involved here, although its inclu-
siori should cause no insuperable difficulties.

4. All itivestigations retain their validity only in
stresses below tho elastic limit.

5. The deviations from straight line as well ‘as the
;,dgflections are assumed to be small quantities compared to
‘the length of tho bar, so that t,he curvature o“f the ela8-
tic line may be accurately “enough defined with d2~/dxa.
The’ scope of validity of this assumption is analyzed in a
subsequent sectiono .,

6. We assume a bar with sectional area c,onstant along
the bar axis, with constant inertia moment and elasticity
modulus.

7. The transverse (bending) oscillations are treated
as plane problem, i.e., all deviations from straight line
are presumed to lie in one plane.

., :.. ..’. ,.’



::LTL!:8.,Astg”.the t~~~.,r~~’b Of “shock, it is si~ly assumed
that. th,e sliock’:load is”’a constant independent of time. ...

,,::A~$4~Ugh~this&y”riot qxactly correspond to the actual .
,.<shock of landing ef b.a airpl.aie or other similar shock -

loads; it”is a good approach in the majority of cases~

9. The effect of the rotatory inertia is disregarded,
.- ,..-.,
Z.@*, the term’ p J ---d~!~ is deleted in the differ-”

ata .x.””.
i-ntial equation. .’,
,.

. . . . . . ..-. .,
,,.

V. DZFFERENTIAIJEQUATIONS ANQ BASIS OF RESOLUTION
“,.

1. Generalities
,.

The approximate differential equation is

(8)

(X must be written with positive sign as. tension. ) The
resolution of this equation, i~e..~ the determinatio& of the
transverse oscillations of a bar loaded under constant ten-
sion X, whose center line in..unstressed condition is.
Y = f(x), is readil,y tractable for khe case of a bar
hinged at both ends, by expanding y = f(x) in a series
whose individual terms correspond to”the natural func-
tions of the free ‘bar oscillation~

For the generalized case (i.-e.,’any support condition)
the expansion of f(x) conformably to the natural func- .
tions, of .thefre~ bar oscillation is abortive. It rather
neces,sitates..the development of the right=htind side of (8,)
ac.cord$ng ..to,,the:natural functions of the homogeneous equat-
ion

,,

the differential equation of the straight bar stressed in
tension X.. It possesses mutually orthogonal natural
functions,, from which arbitrary funct.i;qnsmay be developed
in convergent series. ,.

Tho exact proof of this dcwelopability follows from a
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Hilbert theorem (reference 6), conformable to which any
function (,re.fetr.qnce7), according to the “ntitural functions
of a continuous symmetrical core may be expanded in a con-
vergent series.

The source-like representation of the elastic line is
obtained with the so-called Ilinfluence functioni’ (Green
function). This is the equatioa of the elastic line with
x as independent variable due to a force l>acting at point
x = E. According to whether x~ ~ or x = ~1 the re-
sults are ttio different terms, which are denoted by
x~(x, ~ and Kr(x, ~), respectlvelyo Maxwellts law of
mutual displacements states that a force 1 acting at point
it, c:us~; tie. same: deflection at ~~x as a force 1 acting

Therefore, the influence functions x~(x,[)
valid for. x“= ~ and Kr(x$~) valid for x ~ C are sym-
metrical - (the appendix gives as examples the symmetrical
influence functions for the support conditions correspond-
ing to the second and third Euler case) - that is,

. .
K~(x,~) = Kr(g,x).

But this influence function is exactly the core function
of the integral equation, thus proving the developability
according to natural functions-

Maxwellla law adduced as proof of the validity to a
bar compressed in constant tension and bent in arbitrary
shear follows from the fact that the premise of Maxwellls
1aw: the law of linear superposition is equally valid,
provided the tension remains unaltered. “The validity of
t?ao law of superposition follows from the linearity of the
differential equation (9), which is briefly discussed in the
next two sectio~s with particular reference to the corre-
sponding natural functions and period equations for the
support conditions characterizing the four Eulorian caseso

2. Transverse Oscillations of a Straight Bar

.Loaded in Tension

n= m Tat

with ~t = f(t) and TX= f(x). Put ting

T
KX ,

= sin p t e
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in ,(9):s yields .t&e typical equa :.

... ..... . . .
... .. ..... ,,,

,:.

.. EJ# -x -03? P2 ( 10)

of the four roots~
.,!.:...;.”..,. ..-.,.

..,.
.i

, ..n=,j?~-y~y+’:p:

. . . .

(ii)

.,”
of. 10): K1 = are real for real values of and””

=’-* A
(tens
Solut

i are. imagi
ion) as well
ion reads:

nary, and
as negat

thi
ive

S h
x

,olds fo
(compr

r
e

po
ssi

si-
,on).

, .1

..> : .

. .

,.. ,

“TX =A sh

.

-x x 12)x+ 33 Ax+ c + D sillCos
,,

““r
a

:.
For imaginary

Oots, t’i~= * hi
ssuming that

values
and lC2

of
=

p, we obtain four
+ hi with positive

real
X when

X2---————
4 E2 J2

, PF

CY

then

2

.,

ecoti

(13)> P

b ,esen.sion loads (12)3’0 tr

A ch hx + sh c +D (%-4)

and for comp ressive loads

‘nX A. Cos Ax -1-B sinhx + c cos~x + D Sinxx (15

Ima
oupr
als
sion
,ress
.Out

ginary value
ession excee
o discloses
is not in e

ive stresses
the scope of

s of
ding
that
Ixces
bey
thi

‘P occur accnrding to
the” Eulerian load. The
(13) is met so long as

s of twice the Eulcrien
ond this double Eulerian
,s reportO

VI,3,
I same
the c
load.
load

b
see=

om-

are

in c
tion
pres
Comp
with

It also follows

K12” +

from

K22 =

11)

A2.-

tlia
..—
A= (16)

whore by 9) be comes
.“

(17)J x) +p

,,

Fft]

..:
TX 0
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.

From (16) follows ~ = ~ when X = O. Without ten-
si.on the term for ~x thus becomes

‘f)X =Ach~x+Bshhx+Ccos hx+Dsinhx (18)

and (17) reduces to

(19)
.. .

b) Determination of constants and derivation of the—--————..-—..————..—- -———-
~eriod equation for various ~ ort co.~~-itions.- In the

YfGTIYGKg-”-<Gg-GG<G_GGFi7G–~i2 together with” the natural
values of h and h are analy~ed for the support condi-
tions of the four “Euler cases.

1. Xuler case: one end fixed, the other free.

Boundary conditions: TX =0 and Wxt=O for FO

TX
11=() for x =1.

The fourth is obtained for x = Z as follows:

I’orx=t

hence the shear,

Q = - X sin a= - x qx~.

On the other hand,

Q =“ E J q=l’~

thus

(20)

I?rom the boundary conditions for x = O follows:

A+C=O, consequently C = - A

hB+x D=o, II A
D =- x B.

——
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There,fore ,“
.,.,- . .

Tx = A(ch Ax - ‘“-CO ShX) + B(shhx - 1~ sin xx)

‘ With X= t, the boundary conditions give:

or, with allowance for (16)

~21)

(22)

(23)

So that ‘A and 3 do not disappear, the denominator
determinant of .(22) and (23) must be zero:

The eva,luaticn of this determinant gives the tran-
scendent period equation: . .

whic~, together with (16) gives the natural values of X
and h for the different longitudinal forces.

For X=O, ‘~= h and (24) becomes

2, I!uler case: loth ends hinged.

Boundary conditions: TX=O and nx”=” for ydo

For x = O, we have:

A+C=O

}
hence, A = C =.(,; - ;

‘A2”A- TC =-0
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for x = t, we have:
.

... .7X =Bsh Lt+Dsin~t’=0

“17No, 749

‘..

(25)

~xll =~ Bsh W-~= D rjin-$l= O (26)

The condition, according to which the denominator de-
terminant of. these equations must disappear, gives the pe-—
riod. equation:

,.:..’; ,’4,.”
sh Xl sin—ht = O.

This equatton is fulfilled for. . sin~% = O,
for

r

I?rom (25) and (26) further follows 3 = O,
the validity of

TX =Dsin~x

Since this equation
in the second Euler

that is,

whence

(27)

contains only x, the proper fu~ctions
case are unaffected by the longitudinal

force. Solution (27) iS equally valid when no ten~ion ex-
ists. For this reason it was possible in the secotid Euler
case treated in the Xonin~-Taub re~ort (refere~ce 1) to ex-
@and the right-hand side ~f(’8) co~formably to
functions of the free transverse oscillations.

3. Euler case: one end clamped, the other

Boundary conditions: ‘qx=O and TX ~=0,

‘qX=o -d nx”=o

the natural

pin-ended.

fpr x=O

for FJ

The ““conditions for x = O are the same as for the
first Euler case, hence (21) is valid.”

. .
For x = t, we have:

.,.

.

. . . ? .. ‘.,

— -A
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. .

The con’d~t~dri‘of vanishing denominator determinant
affords:

A

‘ ands after appropriate conversions, the transcendent peri-
,od equation:

.....

. . h-tan I1-thhl=O (30)—
A

The roots of (30) give the natural values h and ~ for
the different X values.

. .
With y = ~ , (28) yields:

w=-
ch Al- COS _i\i--—..,.—_—r____— (31)

sh ?W-~ sin~t

which, in conjunction with (28) and (29) gives:

A
Cos -xl + ~ ~ sin %1 = O (33)

A
Ii’orvanishing longitudinal force (X = O) (30) becomes:

tan A1-th~%=O (34)

since X=A.

Since this paper treats the third Euler case as an
example of the generalized method, the determination of
the natural values requires a more detailed discussions

The introduction of

x
a =-

;7-%-2

changes (16) to

and (30) to

A2=7? (1 - a)

(35)

(36)

—-. .—. .
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., .,-.. tan Li- t---”--y= ~----- —--- th(~~v.l-a (37)
.. >,, , .$-x.

,’
I ...

-~he’ robts ~ t of this equation are obtained as @ter-
sections of the curves

and

3 (a,X) =

For a=l, 5 (a,–h)

Y (a, X)a=l =

.—. —
.— -- .-

+

th(~l #l-

‘a,=
0

consequently,

a) (38)

= xl

.

is a straight line,

For a >1 (38) becomes:

I?igure 3 shows the” functions 5-”f(li) and F(a,–h) plotted
against ~t for several a values (parameter)-

For a=o,

is accurate enough..

All these values are at least within O.l percent aCCU-
racy of

so

......

is

IJo=-1

that ,
.

n>o =.A(:ch .ho X,- COS.$ho- X - ~h ho x + sin ho x) (39)

-.
also sufficiently exact.
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In figure 4 the ‘~t values for the fundamental and
the first higher oscillat~ou have been plotted against a.
Up to about a = 1 the Al values show a slow increase
with a; “Deginlling at a>l the mean rise is steeper ‘
and the curves coil about a mean curve (dashes) which, ex-
pressed in formula, is

-X2 = --—.—-—- (40)~ - ;..;.-L-i

,,
~~rherg n = 1 = fundamental oscillation, and n = 2 = first
higher oscillation. Equation_(4Ll) is exact for whole mul-
tiples of T’(12. For a= 2, .~~ =m.

4. Euler case: both ends clamped.
.

Bouridary conditions: ~x=O and ~x~=O for x=O

The conditions for x = O are, as in.tho first Euler
case, so that (21) is applicable.

I’or x = t, VJo have:
.,.

Tx=’11= A(ch ht-COs ).~)+~ (sh At - ~ sin ~t) = O

!lizedisappearance of the denominator determinant stip-
ulates:

*

Thus the period equation is:

A2 - X2
2(1 - ch At COS Xt) + --~x-- sh At sin ~t = O (41)

The h and ~ values are obtained as roots of (16) and
(41).

For x=O, X=A9 so that the period equation be-
comes:

ch Li cOS xl = 1.
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V,I:: SOLUTION OF THE UNHOMOGENEOUS DITFERE~TtiIki “%QuATION
............ ...- ::.,-.... . .. ‘“’1. Generalities “ ‘ ‘.—-.~.>’..:;..,:.- ,:.. ,.’~.,:.,, ,+., ..<.,,’

“With the “pro~~r. functions derived in V,.2; we proceed
in the general case by developing fbr given original bar
$o~m .Y(x) the right side of (8) according to tho proper,
fvgction%””’of (9) and then pose a, corresponding equation”
for the place function ~,x’,,,iti‘~ho’solution ?l = nt nx

conformable to the natural functions “of (9).
.,

In v“iew of “tfi&comparatively complex form of the nat~
.ur,alfunctions together with the tedious Series develop-

Z“.m.
rnent of “~ Q_?’., this method would, however, become quite

troublesomoo Added to this is the fact that different
functions would have to be sot up for the original bar
form y, even if intending to allow for the probable “cases
only. It must therefore be understood that the investiga-
tion - exactly like similar ststic studies - is feasible
only for stated bar forms, and that tho conditions antici-
pated for.other forms must be arrived at by deduction from
the obtained results.

Under these circumstances the thought lies close to
discuss the general method with such a bar form as to lead
to mathematically convenient formulas. The most elementa-
ry case is a bar form developir.g only the fundamental os-
cillation during the S“QOC-Kperiod. But, excepting the sec-
ond Euler case, the natural values and through them the
form of the fundamental oscillation differs for different
X (sce V,2, b - figs. 3 and 4). Accordingly, different
bar forms are necessary for different X, to insure the
appearance of the fundamental oscillation only. On the
other hand, an analysis which presumes variable original
‘bar forms as X increases, would be unsatisfactory as it
would~ to’ be sure, afford a comparison of the bar under a
stated static load with an equivalent dynamic load, while,
however, affording no possible means of comparing the proc-
esses occurring under different longitudinal forces.

However, we shall use this method for the, third Euler
case,,* which is being analyzed to ox-plain the general moth-

.—$- . . --—-- .-=---- --—--—.-—.-.——,---—--—- ————

“~The Dcriod equatiori of’ thti’thiid Eul,6rcaso”is much more
simpl~ than than that of the first and. fourth .Euler caso
(s~e (24) , (30) , and (41) ,) thus making the ,mathematical
treatment of the third case somewhat more convoniont than
tho first and third case.
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od.”.’“Zt is possible to show that with appropriate handling
of a constant the bar forms at which precisely the funda-
mental oscillation occurs are so little unlike under dif-
ferent longitudinal forces as to make comparison of the
results obtained for different longitudinal forces possible
W.i:th.outgreat errors.

,...
is concerns the effect of slight modifications in the

bar form., we refer to the appendix of the report cited in
roferc3nco 10

2. Choice of Interference Function (Bar S~ape)
, ,. :’”

To insure .tha,tthe ‘lcurvedll bar executes the fundamen-
tal oscillation of the straight bar the second derivative
of its ori~inal””forti must be chosen conformably to the
first natural function of the straight bar..,

Accordingly, we choose for a2Y
52Z

Z)2Y =.-- - C&2 [Ch & X-COS xl X+~ (sh h~ x - ~ax= sin llX) ]

(42)
which up to constant cl, agrees with the first natural
functio~ of (9)0 (Compare

!Then (8) resolves to

T=mt nx=nt [Ch Al x-cog xl

Writing (42) and (43)
we have:

(21) and (31). )

h
X+~ ( sh Al X - _: Sinxlx)]

(43)
in (8) and omitting the index 1,

Now we try to ascertain to which original bar f~~m.
the chosen function (42)” correspo-~ds,, $,...@.,,find, the trend
of the eccentricities y t“o ensure that the shock load X
exactly produces the fundamental oscillatio~o
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~

.... ,, ,.; .“Twice integrating (42) gives:-,

‘[

—2. . —2—..=...
Y=-c ~~chhx+cos–~x+p~~ \ ~2 shh+

j
+.> ~in”~ X +

., k
,,.. Now we can prescribe certain conditions

cl x + C2 (45)

for defining
c1 and C2., Th~ nearest one would be to require that the
boundary conditions for function y agree with those of
the elastic line of the stressed bar.

The conditions then would be:

l.For x=O Yo=

2. II x=()
dy=o

z;

3. “ X=1 Y=o

With only two coustants availa%le, however, only two of
these conditions can be met. Tnere are (4/2) = 6 possi-
bilities.

We select that for which conditions 1 and 2 are ful-
filled. It is simpler in many respects than other forms.
Subsequently, it is shown that for it the maximum moment
nearly always occurs at the point of fixity. Added to that
is..the ready comparison to bar forms under different longi-
tudinal loads cited in V1,l. For this bar form, it is

consequently,
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The evaluation of (46),.gives the curves shown in fig-
~

urt3 5. The values - for x = 0.5 t, x= 0.752 and
x = I proportional tocth.e .ordinatos of the bar form are
plotted versus a. The ordinates for x = 0.25 t are too
small to be representable at the scale used in figure 5.

,,; :.,‘1
I’or a = 1, which corresponds to the Euler load as

tension, as shown elsewhere, A = O because of (36), and

0 because of (31).“v=~ Thus (46) may be expressed as

1‘z (Ch h x-l)+ (COS% X-l)+ ‘~ ~(sh ~ X-h X) +Y ~-
C A2

+L ~y (sin~

after which we detcrmino separately the unknown
1x--x x)

terms,

resulting for a = 1. Furthcrmoro, according to (33)

and consoquontly,

The third term in the expression for y and through
it value y itself becomes ~. Thus the curves (fig. 5)
have a point of discontinuity when a = 1 or, in other
words, the original bar form is undefined for a = 1, so
that the case a = 1 must be excluded from the investigat-
ions.

Figure 6 gives the original bar form (corresponding
to (46)) for a = O at exaggerated scale. We use it as
original form. We now reduce the bar forms resulting from
(46) for different a in such a manner that tho maximum
ordinates (= ordinates for x = t) agree for all a val-
ues with the maximum ordinates for a = 0, By virtue of
(32) and (33), (46) gives the maximum ordinate at

(47)
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Let c = co for a = 0; then, because of..

it gives

(48)

TO assure the same value of Ymax for other values of
a also, we put:

5.86 co 5.86 1 - a
c=- ———._--.—. _-..._—— = . ---——.---—— ———

(

1+~~~2-a co (49)

::+l)(l+W)----
/

Tigure 7 shows the reduction factor ~c- against a,
o

With this choice of c, (46) manifests bar forms for dif-
ferent a which practically do not deviate from each oth-

as seen in figure 8. where - Y/% forx=t,x=:r~

~ T proportional to the ordinates of the re-and x =
&uced lar form2are plotted against a. The discrepancies

31of the curves for x = - and x = Lz
4 2

allel with the a:cis of abscissas ZLre very
greatest percentage of discrepancyxof $he
each other obviously occurs whe~ <“~si’
shown in the graph. In the ranye of 0<

from a line par-

minut e. The
ordinates among
which is not

a < le09, (higher
a values should %e of no practical interest) the maximum

discrepancy among the Y
z; ordinates ehounts, for instance,

for x = ~ 1, to about 15 percent. Admittedly, the cri-

terion of the approach is not this figure ‘but the maximum
error referz’ed to the maximum ordinate. This, however,

does not occur at low ~, butat~=~ and in the range

of O < a < 1.09 is less than 2.5 percent, and in the
range of O < a < 1.05 even less than 106 percent.

This proves that bar forms chosen according to (46)
and containing the c value given in {39) show such lit-
tle discrepancy as to render comparj.son of the computed
results possible without committing a~y great errors.
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,.

3. Solution
.,.

With a view’”to (35), (44) gives” for qt:

pFfit+E J~(l-a)qt”=a EJ~C (50)

There are three distinct cases:

(a) a< 1; (b) a>l: (c) a=l.

We confine ourselves to cases (a) and (b), as the bar form
Y is “not defined for a = 1. (See VI,2.)

The physical interpretation of these ~ases is as fol-
lows: Let PE = Eulerian buckliag load, A~ = correspond-

ing A value, and aE = ratio of longitudinal load to Eu-

lerian load. T% oa

or, because of (28)
e 2

,. ,. . .
. . .

(51)

(52)

It is shown in VII,l that x~ agrees with the value

of -h for a = 1; (52) is Graphed in figure 9. For aE =
.1, it .i@ a’= 1, so that our two cases (a) and (b) may
also be expressed as

aE<l and as ==1.

Physically, this means:

The shock load is lower than the Eulerian load;

The shock load is higher than the Eulerian load,

ZAl Shock load lower than Eulerian loa-d~- With the as--.— —---- - ....-——..——.-—————---—-..-.——
sumed initial conditions,

Tt = O and fit=O for t=O

the resolution of (@) gives, analogous to the second Euler
case in the Koning-Taub report (reference 1):
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. .

-nt= i-+-~ c (1 n COS ~ ‘j (53)

is the frequency. 17ith index O denoting the quantities
referred.to the free fundamental oscillation (a = 0), we
have:

P =Po”;+F~ (55)

I’igure 10 shows the ratio -p- versus aE for the fun-
Po

damental oscillation. As in the second Euler case, the
frequencies drop as the load increases and disappear alto-
gether when a = 1.

Thus with (43) and (53) the resolution of (8):

m= ntnx=l:a~(l-cos Pt)’————-

(56)

At the end of the shock t=T, it is:

The free oscillation of the bar after the shock’ is
with duo allowance for (39):

The choice of time coordinates T after the shock i,s
:;uch that x= O at tho end of the actual shock period,.

.,.. .
:.. . . .
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( ::;< ) ,.,
!., . . . . ,

“that is, the start “of the” free oscillation. Then F= t-T
and the start of the free oscillations are according to
(59): .,,.

; ‘%‘= ~ An sin ~n(ch Xon x - CO,S hon x -

.“- ,,-... sh &n x“+ sin ~on X) (60),,~.; ,, ,...

.
sh &n x + sin ~n X) (63)

These values of ‘the”deflection and rate of deflection
at the start of the free oscillation must agree with the
corresponding values for the termination of the actual
shock (57) and (58). To define the const~nts An and Vnj
in (59), we then have:

~An sin

~ ‘n Pon

Herein:

COS ~n Txon = ~ a~–;cpsinpTnx (63)

Txon=ch hon X-COS &n ~-~on(sh &n x-sin ~on X) =

~=
2 [ e+onx (1 + won) + e‘Lonx (1 - Uon) -

-e 1i~onx (~ - won i) - e-ihonx (1 + Pon i) (64)

is the nth natural function of the free bar oscillation,*
and again by omitting index 1:

A
Tx = ch ~.,,x-cos~ X+V (.sh~\ x - ~ sin T x) =

[

A-.

1 ekx(l -1-~)+ e-~x(l - ~)- “ hi
~ )

el\x(l - N –X- -
... .

-i—k
(

.

-e
)1

l+:w~:
A -

(65)
———___________________________ ________________________________
*SimplificatiO~ Of Pen,’” - 1. is.purposely foregone, since
the e~ct va’lue of ~xon in the ensuing series development
affords more simple results than the inaccurate one.
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the first natural function of the bar oscillation in pres-
ence of a longitudinal force.

The system qxon is orthogonal and any function may

be expanded in convergent series conformably, (See V,l. )

Equations (62) and (63) in conjunction with multipli-
cation of ~Xon and integration of x = O to t, give:

& c(l-cos PT)An sin ~n = -

a “C–2- sin p TAn cOS Yn=l-a pon———

o) won ‘n~ dx
-————.——-.—.——- ( 66)

/ Tjon ax
o

j Txon l-lx‘x
o———..—————_..——— (67)

fLT%ondx
o

The addition of the squares of these terms gives the coef-
ficients of the series expansion at

.

f

.—— —.—- J’~Xon TX ‘x
An= y~~ ~ (1-COS pT)2 + -:: sin2 pT Q~–—–––—— (68)

Pon

and the division of (66) by (69) gives
ment ~n at

P1-co9PT
tan ~n = –~- -————————...

sin p T

,

f T:on d=
o

the phase displace-

(69)

best effected withThe evaluation of the integrals is
the exponential form of the functions ~Xon and TX.

Omitting the n indices, we have:
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,.

,. -.. -(l-~oi)ei~o~

,[

+& ehx- J-%- ~-Ax-
0 A-A. i

. . ...:”.’.

Takiag into co:lsideration (32) , (33) expressed in ex-
ponential form:

and the

.

e ‘t”(l+~)+e -Az(l-qd=o’ (70)

i-xl /

)
M+e -i~l ,1

e
(
1- P~

(
1+~$%--=o (71)

b,

corresponding terms for function ‘rlXon:
. . .-

e ‘ho”(1 - ~. i)+- e-ih”z (1 -1-~. i)’ = 0’ (73)

The integral in the numerator of (68) reduces to

o{tTxo Tx dx =
12 A: (Awehop) 1 –———— ---- -

A04 -A4 h: <?- ‘

,....-.
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The integral in the denominator of (68) is:

jt q~o dx “ & {~ [(l+Wo~
82A.x

-(l”yO)’ ~-aAox
0’

-(1-voi)2 i eai~= +(l+~oi)2 ~ e-zi~x]

[

(I+wo ) (1-V()i) e(l.i-i)hox+
+2hox - —---—-—-————

l+i

+ (W*) (woo.-—.—-————.——
l-i

(l+VO ) ( l+V() i)--—————...——--
l-i

(1-~~) (1+-voi)
-1- ——_——_————————

l-i-i

e(l-i)hox +

1}
2

e-(l+i)xox

o

With a view to (72) and (73) this expression

31

+

reduces
to:

The coefficients of the series are obtained from

An =

1
--—=

IT- - h“ )] (1 - Cos p7)2 + E.:.sin2 p7 (’74)
/on Pon

At this time it is mointed out that all formulas de=
veloped in this section >an be forthwith generalized for the
case ofany original bar form by simply inserting the X

sign at the right-hand side of (42) to (46), (56), (59)”:.
(62), (63) , (66), (68), and! (74)., and giving ~,~,p and p
the index n. n = 1,2,3,,., correspond to the fundamen-
tal oscillation, first, .second, ... to the upper oscilla-
tion. However, for the reasons advanced in VI,l, the in-
vestigation is confined to our specially selected bar form.
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Referring the shock period T to the oscillation p-q-
riod T of the free fundamental oscillation, we obtain
with

. .
(7-5)

and with due consideration to (55):

~: ~.r:-:
p7,=2vb-2—%. (76)

A 01

This enables us to compute the coefficients An for
different a and b from (74). (See table 1.) The a
values denote the magnitude of the shock load and the b
values the shoc7k period.

The maximum b values are those at whichthe time
function of (57) reaches first its maximum, i.e., at which
the maximum deflections are reached during the shock.
Tilis occurs according to (57) for pT = m, or according
to (76) when

9 *
~o 1

J.
b —..

= -X7 2 ,/Trny :
(77)

The shock period b from (77) is plotted against aE in
figure 16. Given the coef,~icients for the range O < pT .c
T-r they are known for any values of p’r, inasmuch as they
are periodic in pT.

A
The figures 100 A: cited in the last three columns

of table I give the $&ount of the particular coefficient
in percent of the fi,rst coefficient- The coefficients are
seen to converge very rapidly for small a and b values
and somewhat more slowly for high a and b values- In
the range of O<a<O.50 the first three coefficients
suffice. The amount of the third coefficient is, at the
most, OG3, percent of the first coefficient. In the 0.5
< a < 0..99 range the first four coefficients are suffi-
cient?.. The fourth coefficient is, at the most, 002 per-
cent. of that of the first, For computing the deflections
even a lower coefficient would suffice, but for computing
the moments the coefficients qf,nigher order grow in sig-
nificance, as their fact?rs h~n increase with n,,

,.,...,.; .,. .,, !..

.. :.

——,,. .——. ,,, ,,,.,-,,11 ,
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We show in table II the phase displacements Qn as
computed frbm (69).

Taken absolute the maximum moment is decisive for the
estimation of the behavior of the bar in buckling due to
shock load., The l/EJ time moments during the actual-—--—
shock period are, according to (56):

(78)

and after the actual shock period according to (59):

a2Y---
3X2 = ~ ‘n ~zon sin [Pon(t-T)+%l (ch”kon ‘+=Os ‘onx -

- sh hon x-sin hon X) (79)
>2
on

The maximum curvature ~~ now occurs either during

O* ~f$.e~ the actual shock period, It can occur during the—————
actual shock only when the period lasts until the highest
possible deflection is reached, that is, when b has at
least reached the valuo given in (77). If this happens
the time maximum of the term denoting the period during-————
shock is, according to (78) and (36):

zr71
~~ (taken absolute) occursThe place maximum of —-

daqx
when the place function ;;r * that is, the bracketed

term in (80) reaches its maximum or minimum. The maximum
of (l- a) (ch A. + w sh Ax) is reached when x“= 0, be-
.cause w_< 00 Besides, since according to figure 11,

~ -a is a true negative fractioti, positive

can only occur within the lengths
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.,,.
0<–hx<g

and

:ll<xx<xt =4.5 approximate ely.

Within these lengths the maximum of

J_
—,..—

Cos Tx+W’1-asin xx””

d2~x thus
lik Ovise occurs at x = O. The maximum of

‘z.’
occurs at x = O and equals 2 - a. Figure 12 shows the

: ddqx
maximum

-%F=2
- a plotted against a.

the place function
da~

#
----- lies in the zone
d.

and sin xx ~0, that is, U.z< xx < l-r.

ily found when assuming that the effe’ct of
a?mx

bolic terms of –-& is small against the

rical terms when approaching the minimum..,

“&(coS–Ax
dx

—2= h

the minimum is

. .
- .—

+pJl- asin7ix)*

The minimum of

of cog xx< o

It iS more eas-

the two hyper-

two trigonomet-

From

<

,.—
f
\- sia~.x+~ l-aces-hx)=O

then obtained in the neighborhooxi of

‘Ax = tan-z
——

Wr-a
a2qx

The computed minima of place function –ZF ‘
taken

absolute, are shown in figure 12. (The figures lie around

~a;u:;~:;; They are seen to be lower than the maximum
O e a e 0.975, so that in this range the max-

imum a23 occurs at x = O. For 1 > a > ().975 the min-
aXa d2~x

imum of –—2-
dx

is decisive, For a ~ 0.99 its absolute

value is only 1.8 percent lower than the maximum for the
same a value, so the assumed absolute naxiuum of the mo-
ment during the actual shock ~~eriod will be “accurate enough

1
for all as 0.99 and bz# -—--w- hen made propor-

A2 2~”m
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tiiona~ to Idzq =“2a(2 - a) ~ X2-..— —..-- ......-
““ axalmax

* or bocauee of... “1-a
(49), to

IIa2Tl
—%

=- 11.72-—%- Co (81)
27 max l+~h”

a2m
The maximum of ~p after the actual shock period-------

‘m-ustbe d~fined by trial from (7:9) which, :although not un-
.:duly difficult fof”a specific,”ca’se, requires nevertheless
a “large amount of pap”er w,ork “fo,rsuch general investiga-
tions as the present report.” For”tliis reason we determine
jonly the upper limit ‘value for””maximum 37/ax2 ●

‘:.,.. .,
<..’:-.’,.~he place-~aximum of the individual qxo.n in (79) is

2 and occurs with x = O. The time-maximum or minimum of
sin [pon (t - ‘T) + ~n]is ~1. AS the An coefficients,

with the exception of the .f.i.rst,are negative, the assumed
alsolute maximum of (79) can~not exceed

(82)

The upper maximum in (82) is almost reached, at least
theoretically, according to the f.ollo.wing. With due con-
sideration to hont (see 7,2,%) , (.,55)gives the ratio of
frequencies of the” (n-l)th free higher oscillation to the
free fundamental oscillation almost exactly at

. .

(4n+ 1)2Pon = ___________-—.
Pol 25

“Within the period
bar thus executes

81 1st
169 2d

and 289 3d

that is, produces

of 25 free fundamental oscillations, the
almost precisely:

free higher oscillations
II II II
II II !1

a beat whose period is 25 T. Within the
time interval of 12.5 T after tie actual silock the value

I
thus reaches its uinimum deviation once relative

to its upper maximum (82). In view of the great number of
oscillation combinations during this interval and the fact
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that the frequencies increase with n, it may be assumed

that the maximum of pl occurs at an instant in which

almost or exactly

sin [pot (t - T) - q~] = *I

and Sin[pOn(t-T)-~~ ‘~1” are valid.
.
..’ Heris it should be pointed out that in reality certain

di’scr”eancies from the theoretical upper limit value given
in (B27 are” nevertheless to be expected; that is, in the
cases in which the thoorotical minimum discrepancy from it
would occur only after a greater number of fundamental os-
cillations. For, in fact, the degree of damping is already
appreciable and reduces the amplitudes~ However, we pass
over the damping effect, as stated in the beginning.

a%
The cases in which tho maximum ~--~ and those in

which its upper limit value after the actual shock are de-
cisive, are analyzed in VII,20

b) Shock Load Greater than Eulerian Load

a>l: (aE> 1)
————..—.——__— .—

with the initial conditions Tt = OS it = o for
t o, the solution in this case is analogous to the sec-
on~ Euler case (reference 1):

qt=l:ac(chp t-l)-- —-- (83)

The course of the further investigation agrees with
that for a<l. The equation of the elastic line for the
actual shock period (t s T) is:

‘0= a: ~ ~ (chp t - 1) TX--——— (85)

At the end of the shock (t = ?), we have:



,p-.
J
.,

... . ... . .. ... .- .----

N,A.C.A. T!echuical Memoraudurn No. 749 37

..... ,:,..... : ,.
,.,., .. ...’. ,,. -,

.. . . . .. . .
(87)

;’. .,.,.

wiereby TX is given in (65) .
,,
,., For the condition after the shook (t z T)
.(59] and for

The An
of the series
hand sides of
with

t = T (60) and (61) are aptili,cable.
.

coefficients and the phase displacement (pn
(59) are obtained when equating the right-
(86) and (60), respectively, (87) and (61)

2a ~ A2
“An= -———_ ‘~- (AV - Lon Won)

a-1

—..—.—.-—.———.—

L
1 1————4 T - zu–—~ )jY ch pT -1)2 + $- shz pT

on A A.on K 1 on

and D-on ch p T - 1
tan C?.n= -— ———-——— .

? shpr

making
—2 ..__ ._

pT=2nb&vf’~-l

01

(88)

(89)

(90)

applicable because of (87) and (84).

The An coefficients have been tabulated for differ-
ent shock loads (a) and periods (b) in table III. The

A
100 –Q

Al
figures -in the last three columns give the amount

of the respective coefficient in per”cent of the first coef-
ficient.

The coefficients converge quite well, and so much the
closer as a and b are smaller. The first four terms
suffice throughout the range investigated. The amount of
tho fourth coefficient is, at the most, 2 percent of that
of the first.

Table IV gives ~n for different a and b.
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The time function in (85) ‘being aperiodic, the maxi-
mum deflection rl~lr~n-gtile actual shock period is always
reached with t = T. This instant, however, is also given
by (59) which decides the condition after the shock. Bear-
ing in mind that, contrary to range a.< 1, the time func-
tion of the speed (87) is always positive at the instant
the shock stops and that, therefore, the deflections and
moments coutinue after the end of the shock, it is readily
seen that the maximum moment always occurs afte~ the actu-
al shock: consequently, the investigation may be restrict-
ed to that of the l/EJ-fold moments of (79).

As concerns the upper limit value of (79), the same
arguments and the same formulas are applicable as for
a<l, thz.t is, the upper limit valuo of (79) is given by
(82). It occurs at x = O in spite of the fact that -
as seen in figure 12 - for a>l at the instant of in-
cipient free oscillations the maximum value of the moment
forx=O is smaller than its assumed absolute minimum
value occurring at around x = 0.65 Z.

VII. RESULTS AND INTERPRETATION

1. Comparison with Static Case

The obvious criterion of the maz~uitude of moments in
buckling due to shock loads is the moment of the same bar
in static buckling stress. Tor this reason we shall at
first, attenpt to resolve the differe~tial equation for
static buckling of a bar of proscribed form. Thus we ef-
fect the calculation for tho bar conformably to (46), for
-example, although .it could bo given direct for this par-
ticular case, as shown elsewhere.

The differential equation of static bucklin

7

is af-
forded from (8) when onitting the term with i32Yat? al-
though figure 13 reveals it even more elementary. It is

and consequently,

(91)
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,..

T!he homogeneous equation,

resolves to

,,, , T =Clcosux+c asin Ux
., .“

‘Putting (93) in (92) gives:
.“..’

U*. *

39

(92)

(93)

and consequently,

u)’=7t2 - A2 (94)

because of (16) and P = - X. Equation (91) is resolved
by variation of tho constants in (93), that is, from

T= cl(x) cos U x + C2(X) sin U x (95)

where
x f(x) Ua dx

cl(x) = J ––––––-–-—---- + kl
o ul~ u~ - U2’ Uz

f(x) UI dx
~(x) = Jo ..–--–__.-_.___-.- + k2

o U21 U1 - UII U2

f(x) = ~z [~ (t - x) - P (y - Ymax)]

U2 = sin o x

and kz and kz are constant valuesO The terms for y
and ymax are taken from (46) and (47)0 After appropriate

“reductions and calculation of “ c1 and cz , it give8

l.–-
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$(h- 1

T= x- t Cosu x,. - pig:u .x) -.
,’

,.

[

—2
A

-Y+ Ymax’(l- Cosox) -’ii “ch”~ x + ~zcos xx+

x
+V(sh~x+~sin~x

)- ($+ 1) FWL
sinox+cosux

,.. ]

+k1cos@x+k2sin U, x (96)
.,’

The boundary condition ~ =0 for x = O gives

kz = O; those of
d~=x

=Oandq=O for x = O and
x;

&
x = 2 give two equations for and kz , thus yielding

F
with allowance for (32) and (33):

and

24
k2 =--

Wp

A-’=-
P ~“(i:+’)

A
The introduction of ,the values of kl, k2, and ~ in

(96) with consideration”to (36) aild (94) gives: L

This term approaches m as a approaches the value 1.
Consequently, the Eulerian buckling load occurs at a =
Fn=l-- 9 as already explained in VI,3, Since then, >t =

EJ~-
4.5 (about) according to figure
lcrian load the known valuo

. .

4, we obtain for the Eu-

~2 Qi (98)
12

independent from the original bar form.

!Th.e l/EJ-fold moments are obtained in first approx-
imation from (97) at

... . . . .
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(99)

Comparison with (80) reveals them to be exactly half
as high as the time maximum of the l/EJ-fold moments due
to shock load by a time-constant force, for an effective
period equal to ha+f the period of the oscillations accom-
panying this load.

This result could equally have been obtained direct:
The solution (43) of (8) represents at the same time the
resolution of (8) without the p F ~~~ term, when equat-

ing ,qt=~= -constant$ Then (44) becomes:

[(EJX2+X)X2~+X~~2]TX= 0,

hence,
Cx a

k=- ——--——— ..— ——.-—-= S
E J~2 +X 1 - a

Or, by the same argument, so long as the shock force
is constant in time and lower than the Eulerian load, the
oscillations are harmonic~ If the bar form is such as to
insure only one definite oscillation - in the present case,
the fundamental - the mean position of the oscillation cor-
responds to the equilibrium position assumed by the bar
under static load. The mean position is reached after a
one fourth period; the position of potential total energy
and consequently of maximum deflections and moments is
reached after one half period. The oscillation being har-
monic, tho maximum deflections and moments are exactly
twice as great as the corresponding magnitudes in the mean
position.

In tho general case, however, with the bar form such
as to produce a motion consisting of tho superposition of
several normal Oscillations, the motion of tho individual
___________________________________________________________

*That stresses due to l’suddenllloads can become twice as’
high as in static loading, is a well-known fact. (Ponce-
let, Introduction a la Mecanique industrielle, physique et
experimental, 1830.)
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bar partic~.es is not synchronous, nor is there any condi-
tion in which the total energy has potential form. In this
case then there is no simple relationship between the de-
flections andmoments produced during the period of load-
~irig due to stbtic and to Itsuddenll loading.* The deflec-
tions and moments for the static caso are then obtainod
from the corresponding,magnitudes of the static case %y

-+= CnS.jlbstitutiilg ~ for the time function qtn, orby

,direct treatmetit’ of the static case.,,

These considerations referred to cases of tension’
lower than the Eulorian load (a <l). For tonsions great-
er than tho Eulorian load (a <1) the approximate equa-
tion of the” clas”tic line fails, as known (curvature =

~a”orsuch cases the exact equation should bed2y/dx2). .
used, i.e., write:

a2?l
-—-

———..———————. ..—

( e~

instead of (91).

.’

+:pp ;~ [Au -x) -P(Y-Ymax)l (100)

.The resolution. of (100) is very difficult. Even a
second..approximat”ion as attempted .by Trefftz (refererice5)
seems intractable. in view of the complicated interference
function ”of(100) . Add-cd to this is the fact that wheh ef~
fecting the dynamic analysis~ we also substituted its
first approximative value d ~/dx2 for the curvature. A
comparison of the results of the dynamic study obtained in
first approximation with those of the static study in sec-
bnd approximatiori would, however, not be logical.
---------------------------------------------------------------

*These ”oxplanations arc, according to Section 128 of Love-
Timpels volume on elasticity. It states, among other
things that, in the general case llThe distortion remains
less than twice the distortion existing ’in equilibrium po-
sit-ion.” This’dots :LOt seem strictly valid. It is well
potisih~g that at isolif”od moints the distortion may be
greater than the twofold distortion existing in static equi-
l$briu~pos,ition,.cvea if tho energy of tho whole bar,
whi~h is governed by an integral term along the bar, is
not pvrOly potential at any instaiit.,. (Compare VII ,2 of
this report, which contains similar deductions for the
free oscillations following the actual shock.)——————- —
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.....’. , “’J, ‘$ Under these circumstances we content ourselves with,-,.~
.~”c,~mparingthe static to the dynamic case for a<l~ while
for evaluating the results of the dynamic.,case for a>l,... ..... ... ..
we only adduce that of tho dynamic, ca~e for a<lin
comparison.

.$”

2. Numerical (Comparison, Deduct.ions, and Examples,.,

,..
..’) “’.O,ntho basis of the foregoing, the function for the
-,:.,::rnomjcqtin tho static case for ‘“a< 1 is, according to (81):

.,..

.’

...

I !

tfy
- 5,86

a %2--—--———
i7 max “ l+~htco

(101)

The ratio of the maximum”””mom’ents (taken absolute) in
the static and dynamic case is then, according to (81) and
(“101) for a < 1:

. . . ,C = 2 (102)

a) Provided the maximum momerit occurs during the..ac-
., tual shock, and

.,,.. b) Provided the up er’ limit of” c
7

is according to
., (82) and (101 ‘: ““

From (102) and (103) it is seen that in our case the
assumed absolute ratio of the decisive moments in the dy-

,.na,micand static case is independent of the amount of orig-
inal eccentricity Co (An/co does not contain ~o)o

The evaluation of (103) affords the figures 14 to 20.
~he particular tables have been omitted. Suffice it to say
that taking” into account the terms of the series expansion
applied in table 19 the amount of tho term of maximum or-
der is, at the most, 2,percent of that Of thO first tcrme

Figuro 17 gives tho c values as ordinates~ the b
values as abscisaas in logarithmic scale. The a and aE
values (in parenthesis) are the parameters. The range of
each curve was chosen so that the maximum shock period (b)
corresponds to the maximum deflection during the actual
shock period. (bmax then corresponds to (77).)

. ‘.

. . .. .
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According to figure 14 the stresses in short shock pe-
ri+~i~are lower than for an identical’.stat%.c~.stress~ But

“h%’:longer shock periods the static stressescan be exc.ee.dy
e~ ‘cotisiderablyo

The maximum c values occur at shock periods corre-
sponding to (’77). They are, on the whole, greater than the
maximum c value of (102) for the same shock period.
Therefore, the maximum moments are even then only to be ex-
pected after the actual shoak period, when the greatest de:

:~fl’ection possible in this period is reached during the actu-
al shock period.

. .

This somewhat confusing statement needs further expla-
nation. If the actual shock lasts just long enough to en-
sure the greatest deflection so that, as in our case only
one definite normal oscillation occurs, then the total en-
ergy’ at the end of the shock is existent in the form of
deformation energy. During the ffee oscillations* follow-
ing the shock there is, therefore, no instant in which the
energy of deformation is greater than at the instant of
shock termination. C-enerally the first is even consistent-
ly lower than the latter for, aside from the type of sup-
port according to the second llulor case, there is no inte-
gral ratio between fundamental and upper oscillation fre-
quency, hence no instaut duriilg the free oscillations in
which the total energy is potential.

The result, according to which the upper-boundary
value of the maximan moments after the shock is greater
than during the shock at the moment of maximum deflection,
is,, however, readily understood when bearing in mind that
the highest moment in a certain period does not necessari-

““ly have to occur at the instant when the total energy is
energy of deformation. Rather, there may be instants in
which the superposition of oscillations may even induce
still higher moments, even though the concurrently exist-
ing deformation t}iilar~;y of the whole bar - which, as is
known, is proportional to the integral of the square of
the moment - is lower than the doforrmtion energy at the
end of the shocke

Figure 15, which is simply the modified figure 14,
reveals that in the range of higher shock loads the dynam-
ic stresses pertaining to the same shock periods increase
more slowly with increased shock load than the correspond-
ing static stresses (and vice versa), “
---- ..—--.---——--—-— ------...-—---------.--.——----.- .-...-..-----
*Excepting the second Euier case, several free oscillations
occur as a rule after the shock even when only one defi-
nite oscillation existed during the shock,
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Contrariwise, figure 16 shows that the greatest pos-
sible c values increase with tk.e shock loads whereby,
however, the shock periods (b) for these values increase
equally. In our case, when the shock period is long
enough, the dynamic load may reach around 3.4 times that
of the static stress, whereas with vanishing shock load
.th.e.stress ig at the most, twice as high as the static
stres9:8

Figure 17 shows the shock periods (b) against shock
load (aE) for shock stress equal to static stress.
These shock periods are seen to increase slowly at first,
then faster, and to approach infinity in the neighborhood
of the Eulerian load.

Figure 18 shows c against shock period for a =
0.770, 7together with periods exceeding those of (77 .
After lecoming maximum, c at first drops with increasing
shock period but can, of course, not drop below 2, since
this figure had already been reached once at the instant
of maximum deflection during the shock. Thus, starting-..——..
from a stated shock period c = 2 is valid. At still
longer shock periods, c then increases again, etc. At
other aE values, the trend of the curve is quite similar.

To render the interptation of the dynamic test data
possible in the a>l range, in view of the a’osence of
comparative base of static case, we -plotted the dimension-
less quantities:

(see (82) ), which are proportional to the upper boundary
values of the moments for the wholo investigated range of
a and aE against b in figure 19, with a and” aE as
parameters, abscissas and ordiaates being given in loga-
rithmic scale to ensure better survey- Figure 20 gives
the same results, but b serves as parameter and the aE
values form the abscissas-

Accord3.ng to figure 22, there is no maximum moment
when a?-l; the moments continue to increase with the
shock period, while for a <..1 the moments reach a maxi-
mum which may not he exceeded during any shock period.

ThG Eulerian Imckling load (aE= 1) tlius represents
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a remarkable boundary for the case of shock load. But ,
while denoting a stability limit for the static case, be-
yond which the bar fails,* it may be safely exceeded in
dynamic load provided the period of loading is short enough
and the crushing limit of the material is not exceeded
thereby. To illustrate: If in our particular case tl.e
shock period is 006 times the period of t-he free fundamen-
tal oscillation of the bar (b = 0.6), the maximum stress
upon exceeding the Euler load by about 17 percent (aE =
1.167) is only about as high as the highest possihlo
stress under a shock load, which is about 14 percent (aE
= 0.864) below the Euler load whereby, however, the lat-
ter is reached only with a longer shock period (’b= 1.2).

To gain an insight into the order of magnitudes of
the shock -periods T (equivalent to the range of b valu-
es in this report) and the allowable maximum ‘lrelative

original eccentricitieslt (5,86 ~-)”” several examples

have been computed j.n table V.

(104)

Besides, since our investigation applies only to con-
ditions ia which the stresses must remain below the pro-
portionality limit, it follows that

%Jlax + ?+p
w

which may also be expressed as

and the highest permissible llrelati~e original ecaentric-
-jtyll is:

.-——- ——— —..--——.———.-.-————..—.——_———-.__.-——___ .—_—--————.——______ _____

*~he approximate differential equation Of t’he problem iS

based upon these arguments. (See VI I,l. )

**See equation (48),
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co ~~ %-:
5.86 .~-~ 5s86 -- -—-- -5-

11
(105)...

EJ Z2 &~-— .-...-
~o ax2 ~ax “

IIThe~ az~%3SFm~xvalues are gtven in figure 190

Table V gives (104) and (105) for a normal steel tube
of 48/1 mm diameter with a proportionality limit of (SP =
2,250 kg/cm2, for a high-tensile 24/1 mm diameter steel
tube with up = 4,200 kg/cm2 proportionality limit and a
48/1 mm diameter duralumin tube with Op = 1,400 kg/cm2,
each for a load stage 23 percent below and 16.7 percent
above the Eulerian load.* Two bar lengths were considered
for the lowor stage; the shortest corresponds to the mini-
mum slendornoss

t

f
-= 4,5 ~,
i ‘P

to which the Eulerian load is yet applicable (compare (98)),
.

the longest one to At the upper stage only
:= 200’

t = 200 was conside~ed, since the concept: boundary slen-7
1
derness conformal to Euler, is without meaning.

It is seen that the permissible eccentricities de-
crease as the shock periods and ioads increase. A crite-
r;on for the evaluation of the computed eccentricities is
Muller-Breslau~s recommended Zb = 0.005.

The order of magnitude of the shock periods in the
analyzed examples is 0.001 to 0.07 second.

In reality it should be possible to exceed the eccen-
tricities of (105) without danger, for tho elongation and
elasticity limit decisive for the dynamic loads is proba-
bly higher than the corresponding limits for static loads
(reference 8). The execution of systematic studies for
the determination of the limit Or dynamic elongation and
---—-— -—__________________________ _______ _____ ______
*The ~p and E values are taken from A. RechtlichJs re-
port,l published in the 1931 DVL Yearbook, p. 379; and
Schroder~s report as published in the 1928 DVL Yearbook,
p. 216-
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elasticity of mater ia~s used in bridge and airplane design
should be well worth while.

Likewiso it is very desirable to check the results of
this study by actual test. The writer hopes to be able
to do this in the near future.

3. Range of Validity of the Approximate
..,:...’..,.,, Differential Equation..,. ,.. ..“.

A check on whether and to what extent the use of the

eqia”tion in which @?-”2 .
\ax )

was disregarded, is admissible.
a~ 2To this end we atteni~t to determine whether the ax

()
values” are actually small against 1. (See IV,5. )

‘The check may be confined to the maximum deflections
after the actual shock, since, as shown in VII,2, they are
nearly always greater than those during the shock.

Equation (59) ~ives:

a~
3X

= ~ An &n sin (pen ~ + Y) (sh hon x

+ Siri &n X - ch hon X + COS hon X) (106)

The individual place functions in this sum are maximum or
minimum for - “,.

d2ff)x—---
6X2

( ch

or

x +- Cos x

sh &n x - sin ~n X) = O

.Aox
e =: sin ho x - Cos ~ x

when omitting the indices n and considering

“Aox
ch ~ x- sh & x= e

Equation (107) is resolved with
:.,.,

... -..’.

\/0 x,= 10036,’ 3.~i’;”N :ti,w 17L4-‘IT,- — ‘1-r
.. ,.“ 4.,.

For the fundamental oscillation A02=:IT

(107)

“.

is appli-
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~ becoxnes maximum either forcabl”e.” Consequently,

? = 4%+-M=0•263
or

_= 4 x 3Q91 = *.995x -———— .——...
z 5’rr

..:.
The evaluation gives:

d~x---
ax

= -1.019 for ~= 0.2~3

.

dff-lx= - 1.434 for ~ = 0.99”5
r;

Hence ~ = 0.995 is decisive for the fundamental oscilla-

tion. We substitute here ~ = 1.00 for which, likewise,

d~ x-—- =
dx

approximately - 1.434 is valid.

But for ~ = 1.00, the place functions of all higher

oscillations also reach a maximun or minimum, since the
higher solutions of (107) agree with the higher proper
values of our differential equations Specifically, it is

I‘h ~ sin 4n+ 1 l-r
ma x

‘dx
––4— w + Cos ~~+~ n=2 sin ~ = 1.414

-Aox
since e = ch ~ X- sh ~ X

becomes negligibly small for highor values of ho x.

lly the same arguments as used in VI”,3~a, we obtain as
upper limit value for mhx faqlaxl :

(108)

IIa’q 1
lTOw a-z ~ can be computed f~om (108) by means of tables

co
I and 111, which contain the ‘q values. l?or T the

co
permissible eccentricities (see VII,2) must be included.
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This calculation was carried through for tho examples
of tablo V and compiled-in table VIB . “j

.:

Limiting the eccentricity ~- so as to keep the stresse-

s during the shock” below the pio~ortionality limit, the

15 I
Q values for a stated bar and stated shock load scarce-
X .... ..,

ly depend on the shock period; furthermore, the I
Ia’fl
I3=

val-

ues a%ove the Eulerian li.mit.a~e even-spaller than those
below it.

.....

2

In the examples the maximum, is
/() 2 ““=0.0s22 = 0.007

for a high-tensile steel tubo (24 X 1 mm, I = 163 cm,
PE = 750 kg) at a = 0.77 ,and,,,l =,,0.10, that is, for a,
““comparatively small shock”lotid’ and “Shock period. Even

this
“a?l2
C3 )rlax —- nay be summarily”’disregarded against 1.

x

The use of the ap’jjrox’&ate
herewith proved as justified.,.

APPENDIX

differential equation is

,.

,,

Derivation of the ,interference functions for the sec-
ond and third Eul.er:cas”b.’

l?or the pin-ondod support as shown in figure 21, we
have: for x ~ ~ the differential equation of the clas-

..—_.—
tic line, becauso of.,

at

which resolved, becomes:

t- t
‘T = A Si.11~ X+ B COS @ X - pt X-———-

wh,ere.,,:., :;;:... .’.- ..&●,.“:’:... “@..= ~J - ‘ . , .... ... .. .. . . ..:, .

The limit condition T = O for x = O gives B = O. Con-
sequently,
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.. . . . .
,.>’,. . . ~., ,., -k .“ ‘ .:,:
,,”.

‘.. .
~

= .A sin ‘(J)“x - “+- x.. < “(109)
. . .. . . ..—.

,,.,.
@or

:>,. :.,
.,.,.= .~ .:he’;.differ&t~&l equation i“~,’:“ ~~

.. ... ...;.
dz

:.

EJ
3

+p; =” 1 -[
,.a

—~—x+(x-g)
.

. ..:, ,’, .. . .

and, its resolution is: . ...

n
L-x‘~sinUX+gcOsh X-~i–-t

The limit condition, ~ = O for x = 1 gives:

consequently,

=i (sin ox-
I-x

m tan O t,.cos ,0 .x) - ~–– ~ (110)

The determination of constants ..Aand ~ follows from
the continuity conditions at- x.= ~ ,. For “this point the
~ values of (109) &rid,”(llO), as well as their” first de-
.rivat ives”, must be mutually equal. Equating (109) and.
(110) for x ~ ~ gives:

A= i(l - tan (0 t cot u ~) (111)

Equating the first derivative gives:

Then (111) and (112) yield:

sin u ~x = - –-—––---—
Putan@~

and (109) and (110) become:
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where we use ~ in place of K(x, E)ti As seen, the core
, functions in x and “t ,actually are symmetrical.
,...’

At the expense of much more paper work, although fun-
damentally with the same degree of accuracy as in the case
of figure 21, the core functions may be obtained for other
support conditions. For the bar clamped at one end and
hinged at the other;” for example (see fig. 22) , the un-
known support pre~sure

b
occurs in addition to the four

constants A, B, A, and . The conditions for resolving
these five quantities are:

wherein subscripts - ~ and r

x =’ o

x= t

X=fil

x = 1

X=t

deno’te the parts of the

. . . .

elastic line on the lcf~ and right-hand side of x = E*
The calculation giv~s the following symmetrical core func-
tions: ..

.. ,.,”
,,.
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l~sinwx+xsinw~-u)x ~cosu)l - ~[sinw(~-z)+wz’~osu$-1)] sin wx x
K~(x.5)= ; .-

sinw ~”- d Cos Wz’ P

*

L.
0
..
!-
● ,

El

1 x sin w~-1.~sin wx-wx ~ co. WI
[.- ~ sinw(x-1) +wZ co.w(%l]]sin w~ ~

Kr(X$~) = ; —. --
~~n ~Z _ WI co..UJz P

.,

,.

.,
.

.
.,

.,,

“g

lao
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TABLE 1.
----

... . .—. .ar–b
-t

--- ——.

t
---- ——

0.25: 0.10

——-
0.50

---—
0.75

-----
0,84

----
0.91

----
0’95

----
0.99

----

0.30
0e556—— —
0.10
0.25
0.50
0.651.—___
0.10
0.30
0.50
0.859--——-
0.10
0.25
0.50
0.75
1.040-——-.-—
0.10
0.25
0.50
0.75
1.00
1.34
-—--—
0.10
0.25
0.50
0.75
1.00
1.50
1,764— —--
0.10
0.50
1000
1,50
2.00
2,50
3000
3.50
3.845
.—
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Coefficients An of Series (59) for a< 1
.-—-_._--—_—__ -— --—--— —-—-—.

!--— ——,

n= 1
—---—

-—______
0.159
0.453
0.632

—---—
0.349
0.896
1.694
1s863--------
0.571
1,962
3.595
5.232——--- ___
0.680
1.928
4.755
70565
8.972-—-_—____
0.771
2.245
5.94

10.50
14. !58
16,90

—--—.
0.819
2.425
6.695

12.64
19.22
29.43
31*O3------—
0.87?
7.67

26.00
53005
84.50

115.20
139.9
154.9
158.0
,-——- -—

.—-— -----
n=2

.----—_-,

.-———____
-0.00052
-0,00282
-0,00488
.—-—- -.
-0~00263
-0.0113
-0,0291
-0.0332.———----- 1
-OaO07461
-0.04595
-Oo1028
-0 ● 1622.—________
-0.0103
-0.0470
-0.1533
-0.266
-0.322,————-..——.
-0.0137 I
-Oo064
-0.222
-Oo426
-0.610
-Oo716 ~
.-—-—-—- —
-0.0159 ;
-0.0748
-0.2695 ~
-005515
-0.867
-1.355
-1.432-—--———.
-000185
-0,3333
-1.257
-2.622
-4021
-5.76
-7001
-7.76
‘7.93

‘R
co

n= 3

I

n= 4
.———--- ———--

.-.—------- -.-—_____
-0.00008
-0.00054
-0.00095

-0.00036
-0.00188
-0.00505
-0.00572

-OoOO096 -OaOO025
-0,00724 -0.00199
-0001658 -0,00460
-Oo02636 -0.00733——————_______________
-0.00132 -0.00028
-OaO0725 -0800193
-Oe0246 -0.00690
-0.0431 -0.0120
-0.0520 -0 ●O146
,-.—————----- -——————-
-0,00167 -OeOO042
-0.00939 -0.00247
-0.0340 -0-00902
-Oo0657 -0.01745
-0.0940 -0002500
-0.1106 -0,02940

-0.00189 -0.00047
-0s01062 *OoO0280
-0.0399 -0001060
-090823 -0.02195
-Oo1296

t

9“0.0345
-Oe2027 -0.0541
-0.2144 -0,0572.—----——— ----_—-
-0.0022 -0.00043
-0.0485 -0.0105
-0.185 -0.0403
-0.388 -0s0845
-0. 623 -1-0.1358
-0.852 !-0.1858
-1003s 1-0.2260

1 0.2510-1,149 1-
-1.173 I-O.2560

,—--— ________

A
100 -Q

AX

n=2 n=3 n=4’
——___________
p e r c ent———__________
0,33 0.05
0.62 0.12
0.77 0.15
---—-—--_-—-
0.75 0,10
1.26 0a21
1.72 0.30
1.78 0.31.-——— ——---+
1.31 0.17 0.04
2.34 0.37 0.10
2.86 0.46 0.13
3011 0050 0.14——_-—___ ..-,.______
1.51 0.19 0.04
2.44 0038 0,10
3.22 0.52 0.15
3.48 0.57 0016
3.58 0,58 0016———_______ _
le78 0.22 0.05
2.84 0.42 0.11
3.74 0.57 0.15
4s06 0s63 0017
4.18 Oo64 0.17
4,24 0.65 0.17
-—_—— _______ __
1.94 0,23 0006
3.08 0.44 0.12
4o02 0060 0.15
4036 0,65 0.17
4.51 0.67 0s18
4.60 0.690.18
4,61 0.69 0,19--— ___________
2.11 0.25 0.05
4.34 0.63 0.14
4.84 0.71 0,16
4.95 0073 0016
4,98 0.74 0.16
5.00 0.74 O*1G
5s02 0,74 O*16
5,02 0074 0016
5.02 0.74 0.16
——-——--_--—--_-
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TABLE II. Phase Displacements ~ of Series (59)

.--— —

.a
-----—-
0.25

---..—-
0.50

0.75

-—-- —-—
0.84

-—-————
0.91

---———-
0.95

-------
0.99

.$

-------

.-—---—-—

b
—---- -—

‘o s10
0.30
0.556.--——— ——-
0.10
0.25
0.50
0.651.---———--
0.10
0.30
0.50
0.859.— -- -—-..—
0.10
0.25
0.50
0.75
1.038.—..————_ _
0.1
0.25
0.50
0.75
1.00
1.34.——-_-_—___
0.10
0.25
0050
0.75
1.00
1.● 50
1.764.—---.—__
0.10
0,● 50
1.00
1.50
2.00
2.50
3.00
3.50
3.845

—-———_-

for a<l.—--—.— -———.-— —-.-—---

n=1
-—-———_—-—-

0.3131
0“.8988
l-r/2--— --. ---.—

0.3097
0.7242
1.2588
lT/2——--—--—-

0.3074
9.8969
1.1489
n/2--———-————-

0.3127
0.7004 “
1.1111
1.3638
l-r/2-——-. -—-.-—

0.3589
0.6820
1.0597
1.2716
1.4153
n/2--——————--—-
0.3043
0.6729
100339
1.2255
1. 3,+48
1.5b30

l-r/2-—-— .-— ——-. —.-
0.3020
1.0100
i.2787
1.3878
1.4493
1.4910
1.5290
1.552
l-r/2

-—-- —-.
n= 2—--—-

~. 810
1“.330
Tf/2———.——--——

0.783
1.224
1.468
n/2——-——-.—-

0.799
1.176
1.433
l-f/2 “——---—-—

0.809
1.220
1.419
1.505
l-r/2-——-——.—_

0.796
1.208
1.400
1.476
1.523
Tr/2,———- ———-

0.794
1.202
1.389
1.447
)..500
1.550
l-r/2,——--—-—-

0.790
1.379
1.478
1.514
1.533
1.546
1.554
1.565
I-r/2

.— ..-.-.-— ---

———-—--——-. —
L.. ———— —

n= 3
—— --—-
1,144
1“.454
n/2--.———— ---
1.122
1.398
1.521
l-r/2.-— ——— —-
1.134
1.430
1’;504
IT/2-— —.-——-..
1.410
1.414
1.505
1 ● 543
TT/2-———————.
1.131
1.391
1.488
1.525
1.598
lT/2--.——.---------
1.131
1.388
1.483
1.518
1.536
1.561
TT/2.-—.-—.-———..
1.112
1.474
1.525
1.542
1.552
1.558
1.563
1.568
Tr/2

—- —.-—---

-.——-—
n= 4

----— —--

-————-—-

-—--—, ----
1.304
1.489
1’; 532

Tr/2--- ——.- -—-
1.309
1.469
1,528
1.553

lT/2———_——. .. ....
1.303
1.4G5
1.522
1.544
1.557
n/2—-—-----—
1.302
1.463
10519
1.540
1.551
1,565
Tr/2,— ___ ...—
1.300
1“.516
1.595
1.5 5“”5
1.560
1.564
1.566
1.569
n/2

,—--_-—
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a

----

----

1;01

-— --
1.05

-———
1.09

----

TABLE III. Coefficients An of Series (59) for a>l
.—— —- —. —- ——-—-—-—. --—--- -—- —. —-- -—-— —-. ——-—

r-’” %’ r An
= 100 --

b ‘o I ‘--AI “— —- —— ------
n= 1 n=2.—-_—---———-. ..—----. —

---——— .--- —----—---——.
0.10 0.911 -0.0201
0.25 2;768 -0;0969
0.50 8.20 -0.371
0.75 17.22 uO.843
1.00 30.4 -1.530
1.50 71,5 =3.688
2.00 138.7 -7.2L-———— ----— .---------,
0.10 0.974 -0.0238
0.25 3“.025 -0.1163
0.50 9.44 -0.466
0.75 21.47 -1.140
1.00 41.9 -2.285-——— —— ___ --—______
0.10 1.072 -0.0293
0.25 3.414 -0.1448
0.50 11.36 -0.617

&&lEz-G&-

Id
-0.00230 -0.00028 2.21 0,25
-0.01338 -0000173 3050 0,48
-0.0532 -000070 4.52 0,65
-0.1219 -0.016 4,76 0,71
-002220 -Oo029 5.03 0.73
-0.536 -0.070 5.16 0.75
-1.048 -0.137

t

5.20 0.76
.——.——- ——-——- --— --—
-OoO026 -0.00064 2.44 OF27
-0.0155

II
-0.00393 3.85 0051

-0.0645 -0.01652 4.94 0.68
-0.1593 -0.0408 15.31 0.74
-0.3205 -0.0823

1

5.46 0.77.-—-—--- .--—-——— ..——— ———_
-0.00314,-0.00075 2.73 0.29
-0.01858 -0.0047 4.24 0.54
-0.0818 ,-0.0209 5.44 0.72
-0.2195 -0.0561 5.78 0.78
-0.4930 -0.1262 15.93 0.80

n= 4
-——-—
bnt
—.——-
0.03
0.06
0.09
0.09
0.10
0.10
0610—..—
0.07
0.13
0.18
0.19
0.20—.——-_
0.07
0.14
0.18
0.20
0.20

TABLE IV Phase D: ~lacements 94 of sQries (59) for a>l---——--—.- .—————— -- __-—.-—__-—_ _____ ___.___-.____--__.-___,
~n

a
—--—-———
1.01

----—
1.05

-—-—-.
1.09

-—--—-

b
-———---

0.10
0.25
0.50
0.75
1.00
1.50
2.00—-.—--
0 ●10
0.25
0.50
0.75
1.00—--——---
O*1O
‘0.25
0.50
0.75
1.00

—-——-_

.-. __ —- -— -_
n= 1—— _-——— __ ..

0.3010
0. G630
0.9949
1.1573
1.2457
1.3360
1.3788——— ---—.
0.3024
0.6571
0.9703
,1.111?
1.1823-——--———-.—-
0.3024
0.6473
0.9413
1.0630
1.1164

——--- ——-.
n=2

..---—.——— ----
0.788
1 ● 349
1.452
1.490
.1.s09
1.527
10535-———-- -.

‘0.802
1.198
1.367
1.423
1.448

‘0.786
1.184
~o~~o

1“.401
1.422

----.— -----

-———-—————-——-..—_—-
nn 3 n= 4.._-___ —.—_-______..-——.----

1.126 1.307
1.427 1.464
1.476 1.516
1.506 1.534
1.521 1.542
1.536 1.551
“1.542 1.554-———— ---—--,-—— -——-
1.127 1.300
1.381 1,459
1.470 1.511
1.498 1.528
1.510 I 1.535-——.-— -— ——__—
10130 T 1.300
1.378 10457
2.464 1.508
1.489 1.523
1.499 1.528

-1----— -—— -—-— —
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TABLE V,..Illustrative Examples of Highest Permissible Rela-
tive Original Ecczentri.cities ymax~ for Different‘>
Tubes Under Different Shock ”L”oads P and Different
Shock Periods -r.

______________________________________________________

——

aE

-—-—-.

—--..—.

0.7’70

---——

1.167

-————

—— ----------------------y -----------------------------

:Iji:::!i:j~::
0.25

il 1-

0.0061 0.0042 0.0136 0,0179
0.50 0.0122 0.0016 0.0271 0.0070

2560 1160
0.75 0.0183 0.0010 C.0406 0.0043.
1.04 0.0254 0.0009
.—— - ---- ____ _..-_ __.. -.________ ----- .-. .,,.-_,.

!!!, 4 ~ ~ ~lyss, i ii

(mm X .03937 = in. ) (cm X .3937 = ino)

(kg X 2,20462 = lb-] (kg/cm2 X 14.2235 = lbO/sq@ ino)
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TABLE V (continued)

59

.—-

-----

aE

--—.

-—---

0.770

1.167

--——..

Steel
{

2X10G kg/cm2tube 24/1 MM E ~ .4200 II
q

b

0.10
0.25
0.50

0.’75
1.04——_-—_
0.10
0e25
0.50

0.75
1.00-———

I . I .
4-=9%

I
b

{

- = 200
P~=305G kg i

{
pE=750 kg i

1 = 80 cm
4

1 = 163 cm—-—-, -—---- -- .—-— ———-—- ....-.-.-.-.-—---.—-------
~ y~x

P T Ymax.-.-—-
7 ip T —------7

kg-——--

2345

.———-

.——-

S

0,0006
0.0016
0,0032

0.0048
0.0067——— .---.—

0.0167’
0.0056
0.0022

0.0014
0.0011-.---——.- 1

0oO027
0.0067
0.0133

565
0.0200
0.0277..——-—.- ---....--.——.—-
0.0027
0.0067
0.(3133

855
0.0200

L 0 QW!,_-—-—.— -—

b
——-——— --

0a1214
0.0409
0.0160

G.O1OG
0,3084____________
0.0649
0.0191
0.0055

0.0022
0,0010.-—.—___.-—

-——-_—+- .- —- - -——- ------- ____ —__________ ..-..-——————___ ____ _9_.-........._._

lhzhalumin tube 48/1 mm {~=
= 0.75X 10= kg/ Cm
= 1400 II

-——-
- --.——

0.770

---——

1,167

b

- ..-—___
0.10
0025
0.50

0.75
1.04----—
0.10
0,25
0.50

0.75
1.00

-—.-—-—-. ——----- ---. —.-—.--s
7

== 104
pE=2060 kg {,;

= 173 cm-——--

P

kg---—-

1585

-——- .-—...--—

T

----.-—— --
s-.--— ——--

0.0014
0.0036
0.00’72

000108
0.0149

-——- -————

ymax—— —.-.
1--—-——--

-----— .-
0.0165
OoO056
0.0022

000014
0.0011

--.--—- .

.- 4-— .--. .—— —- ____ ______ ... ___ __

pE=560 kg {: = 200

‘-p””----r--;--’-’-rf=---——...--. --------___________
kg

r

s’-———— ——— —-— .--.-—.-—_..-_
0.0053 0,1068
0.0132 0.0360
Oo0264 0.0141

435

I

0.0396 0,0087
0.0549 0.0074-—-.-—- .-—______ ._________
0.0053 0,0561
0.0132 0.0165
0.0264 0.0047

655
Oo0396 0.0019

~ 0.0530 0,0009
---——- —------______ ______
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TABLE VI. Upper Limit Values of ~~ for
-. ...

--—.

a

——-—.
0.84

————.
1.09

——-—.

.—-— -

aE

-———-—.
0.770

-——— -.
1.167

—.-—-——.

____. ___-.__ ._----_ --__ —_: I_-._:Ithe Examples of Table V --.—— ---—.—-—.——

~

Upper 1-—- ——-------
Steel tube
diameter
48X1 mm

b pE=1500 kg

1 = 332 Cm

.$ = 200

t-
—- ————-.

imit of 1~/a~l for-—--——-—— —.. —-—-—.—

!

Steel tube Duralumin tube
diameter diameter
24X1 mm 48X1 mm

pE=750 kg pE = 560 kg

t =163 cm = 332 cm

~ =200 L = zoo
i..-— ---— ------—-— -—. ..—

I
YmaxEccentricity --~-–

i

to table V
,.-—-—— --_-_-—— --- _.__-———-- —

0.10 0.036

1

Oo082
0.25 0.034 0.080
0.50 0.034 0.079
0.75 ,

/

0.034 0.079
1.04 0.034 0.075

,——.-— ---- —-—---- —- —..—-——-—
0.10 \ 0,026 0.070
0.25 0.025 0.059
0050 0.024 I 0,067
0.75 0.024 [ 0.067
1.00 0.020

1
0.067

--–-__—----------------- -.----–.-–--

acco rding

-—---— _._ —.---------

0.072
0.070
0.069
0.068
0.068

.—_—-— —. —--,-----
0.061
0.059
0,058
00058
0.058

.._-——-__ ——— —_-

Translation by J. Vanier,
National Advisory Committee
for Aeronautics.
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Figure 10,-Ratio of fundamental
frequency for ~PE and

Q versus aE.
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Figure 12.-Maxinnxnand m~nimum
(absolute)of ~zx versus a.
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Figure ll.-a-~i~versus a.

Figure 13.-Elastic line
of a bar

supported according to
~rd Eulerian load case

and under forco P with
a given eccentricity.
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Yigure 14.-Ratio c of absolute assumed maximum moments in static and
dynamic case for support according to 3‘d Eulerian case

versus b proportional to shock period.(Parameter aE denotes ratio of
shock force to %zlerian %uckling force).
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Figure 15.-Reglotting of fig.14 (c versus aE,paraAeter l)) *
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Figs. 20,21,22

m, b= 0.10
p’, = 0.16
0“, = 0.25
P, = 0.50
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Figure 21.=Illasticline of %ar hinged at either end and stressed in
compression P and single transverse load 1.
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l?igure22.-Elastic line of bar clamped at one and hinged at the othr
end under load P and a single transverse load 1.

. .———_ ____



,,, .,,, . . .. .. .. .. , I ,, .,,. =—.

.

&

.

.. . .s.

_.__—. .—
-’—~–-. . ..=. .

! Illllillllllnifltillllllllllllllll~
31176014374046 :.,

.

,
— .


